A latent class selection model for nonignorably missing data

نویسندگان

  • Hyekyung Jung
  • Joseph L. Schafer
  • Byungtae Seo
چکیده

A Latent-Class Selection Model for Nonignorably Missing Data Most missing-data procedures assume that the missing values are ignorably missing or missing at random (MAR), which means that the probabilities of response do not depend on unseen quantities. Although this assumption is convenient, it is sometimes questionable. For example, questionnaire items pertaining to sensitive information (e.g., substance use, delinquency, etc) may show high rates of missingness. Participants who fail to respond may do so for a variety of reasons, some of which could be strongly related to the underlying true values. Data are said to be nonignorably missing if the probabilities of missingness depend on unobserved quantities. Traditional selection models for nonignorable nonresponse are outcome-based, tying these probabilities to partially observed values directly (e.g., by a logistics regression). These methods are inherently unstable, because the relationship between a partially observed variable and its missingness indicator is understandably difficult to estimate. Moreover, with multivariate or longitudinal responses, the number of distinct missingness patterns becomes quite large, making traditional selection modeling even more unattractive. Information in the missing-data indicators is sometimes well summarized by a simple latent-class structure, suggesting that a large number of missing-data patterns may be reduced to just a few prototypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection for Regression Models with Missing Data.

We consider the variable selection problem for a class of statistical models with missing data, including missing covariate and/or response data. We investigate the smoothly clipped absolute deviation penalty (SCAD) and adaptive LASSO and propose a unified model selection and estimation procedure for use in the presence of missing data. We develop a computationally attractive algorithm for simu...

متن کامل

Empirical Likelihood for Estimating Equations with Nonignorably Missing Data.

We develop an empirical likelihood (EL) inference on parameters in generalized estimating equations with nonignorably missing response data. We consider an exponential tilting model for the nonignorably missing mechanism, and propose modified estimating equations by imputing missing data through a kernel regression method. We establish some asymptotic properties of the EL estimators of the unkn...

متن کامل

Growth modeling with nonignorable dropout: alternative analyses of the STAR*D antidepressant trial.

This article uses a general latent variable framework to study a series of models for nonignorable missingness due to dropout. Nonignorable missing data modeling acknowledges that missingness may depend not only on covariates and observed outcomes at previous time points as with the standard missing at random assumption, but also on latent variables such as values that would have been observed ...

متن کامل

A Comparative Review of Selection Models in Longitudinal Continuous Response Data with Dropout

Missing values occur in studies of various disciplines such as social sciences, medicine, and economics. The missing mechanism in these studies should be investigated more carefully. In this article, some models, proposed in the literature on longitudinal data with dropout are reviewed and compared. In an applied example it is shown that the selection model of Hausman and Wise (1979, Econometri...

متن کامل

An application of Measurement error evaluation using latent class analysis

‎Latent class analysis (LCA) is a method of evaluating non sampling errors‎, ‎especially measurement error in categorical data‎. ‎Biemer (2011) introduced four latent class modeling approaches‎: ‎probability model parameterization‎, ‎log linear model‎, ‎modified path model‎, ‎and graphical model using path diagrams‎. ‎These models are interchangeable‎. ‎Latent class probability models express l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2011